Sains Malaysiana 53(5)(2024): 1201-1218
http://doi.org/10.17576/jsm-2024-5305-17
Developing A Temporary External Fixator (TEF) For
Mandibular Reconstruction Using Two-Phase QFD And TRIZ Approach
(Pembangunan Peranti
Penetap Luaran Sementara (TEF) untuk Pembinaan Semula Mandibel menggunakan
Pendekatan QFD dan TRIZ Dua Fasa)
RUNGSAN
CHAIYACHET1, APICHART BOONMA1,* & TEERAWAT PAIPONGNA2
1Department of Industrial Engineering, Faculty
of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
2Dental Department, Sakon Nakhon Hospital,
Sakon Nakhon 47000, Thailand
Received: 14 August 2023/Accepted: 22 April 2024
Abstract
A temporary external
fixator (TEF) is a device used to bridge resection defects after sequestrectomy
and before secondary mandibular reconstruction surgery. A well-designed TEF
should be customizable and adjustable to accommodate individual patient needs.
This study developed a TEF for mandibular reconstruction using the quality
function deployment (QFD) and the theory of inventive problem-solving (TRIZ).
Customer needs (CNs) were investigated from literature reviews and a survey.
Subsequently, a questionnaire was developed, refined, and delivered to 22
experts to identify the essential principles of TEF. Afterwards, the QFD
priorities were analyzed based on the acquired CNs and technical requirements
(TRs), and the top priorities were found to be safety and adequate operational
space. The guidelines for developing a TEF with TRIZ were established as
follows: First, using carbon fiber epoxy composite and Ti-6Al-4V as the
material for TEFs is recommended Second, permanent magnet should be inserted
into the clamp lock bolts to prevent them from falling off during surgery.
Last, replacing one Schanz screw with three Bicortical screws is recommended
for the fixator pins. Additionally, it was also found that changing the screw
size from 2.5–4.0 mm to 2.0–2.4 mm could reduce hole defects in the mandible.
Keywords: Mandibular
reconstruction; quality function
deployment; temporary external fixator; theory of inventive problem-solving
Abstrak
Penetap luaran
sementara (TEF) adalah peranti yang digunakan selepas sekuestrektomi dan
sebelum pembedahan kedua pembinaan semula mandibel untuk mengantara kelompangan
kesan reseksi. Rekaan TEF yang baik haruslah boleh disesuaikan dan dilaraskan
untuk memenuhi keperluan setiap pesakit. Kajian pembangunan TEF untuk pembinaan
semula mandibel ini menggunakan kaedah penerapan ciri berkualiti (QFD) dan
teori penyelesaian masalah inventif (TRIZ). Kaedah kajian yang digunakan untuk
mengetahui keperluan pelanggan (CNs) adalah daripada tinjauan kepustakaan dan
kaedah tinjauan. Satu set soal selidik kemudiannya dibangunkan, diperinci dan
dihantar kepada 22 pakar untuk mengenal pasti prinsip penting TEF. Seterusnya,
keutamaan QFD dianalisis berdasarkan CNs dan keperluan teknikal (TRs) tersebut.
Keutamaan tertinggi adalah keselamatan dan ruang operasi yang mencukupi; oleh
itu, garis panduan untuk membangunkan TEF melalui TRIZ telah ditetapkan.
Pertama, adalah disyorkan untuk menggunakan komposit epoksi gentian karbon dan
Ti-6Al-4V sebagai bahan untuk TEF. Kedua, magnet kekal hendaklah dimasukkan ke
dalam bolt kunci pengapit untuk mengelakkannya daripada jatuh semasa
pembedahan. Dan terakhir, disyorkan untuk menggantikan satu skru Schanz pada
pin penetap dengan tiga skru mini. Kajian juga mendapati bahawa mengubah saiz
skru dari 2.5–4.0 mm kepada 2.0-2.4 mm boleh mengurangkan kecacatan lubang di
mandibel.
Kata kunci: Kaedah
penerapan ciri berkualiti; pembinaan semula mandibel; penetap luaran sementara;
teori penyelesaian masalah inventif
REFERENCES
Alaneme, K.K., Kareem, S.A., Ozah, B.N., Alshahrani, H.A.
& Ajibuwa, O.A. 2022. Application of finite element analysis for optimizing
selection and design of Ti-based biometallic alloys for fractures and tissues
rehabilitation: A review. Journal of Materials Research and Technology 19: 121-139.
https://doi.org/10.1016/j.jmrt.2022.05.001
Alencar, M.G.M., Bortoli, M.M., Silva, T.C.G.D., Silva,
E.D.O.E. & Laureano Filho, J.R. 2018. Suitability of wrist external fixator
for treatment of mandibular fracture. The Journal of Craniofacial Surgery 29(4): e371-e372. https://doi.org/10.1097/SCS.0000000000004375
Amaro,
A.M., Paulino, M.F., Roseiro, L.M. & Neto, M.A. 2020. The effect of
external fixator configurations on the dynamic compression load: An
experimental and numerical study. Applied Sciences 10(1): 3.
https://doi.org/10.3390/app10010003
Ameen,
W., Al-Ahmari, A., Mohammed, M.K., Abdulhameed, O., Umer, U. & Moiduddin,
K. 2018. Design, finite element analysis (FEA) and fabrication of custom
titanium alloy cranial implant using electron beam melting additive
manufacturing. Advances in Production Engineering and Management 13(3):
267-278. https://doi.org/10.14743/apem2018.3.289
Ameerally,
P.J. & Hollows, P. 2004. Use of an external fixator to stabilise the
proximal mandibular during reconstruction. British Journal of Oral and
Maxillofacial Surgery 42(4): 354-356.
https://doi.org/10.1016/j.bjoms.2004.02.031
Annino
Jr., D.J., Sethi, R.K., Hansen, E.E., Horne, S., Dey, T., Rettig, E.M.,
Uppaluri, R., Kass, J.I. & Goguen, L.A. 2022. Virtual planning and
3D-printed guides for mandibular reconstruction: Factors impacting accuracy. Laryngoscope
Investig. Otolaryngol. 7(6): 1798-1807. https://doi/10.1002/lio2.830
AO
Foundation. 2022. Safe zones for pin placement in the mandible.
https://www.aofoundation.org/ (Accessed on January 7, 2024).
Bak,
M., Jacobson, A.S., Buchbinder, D. & Urken, M.L. 2010. Contemporary
reconstruction of the mandible. Oral Oncology 46(2): 71-76.
https://doi.org/10.1016/j.oraloncology.2009.11.006
Barr,
M.L., Haveles, C.S., Rezzadeh, K.S., Nolan, I.T., Castro, R., Lee, J.C.,
Steinbacher, D. & Pfaff, M.J. 2020. Virtual surgical planning for
mandibular reconstruction with the fibula free flap: A systematic review and
meta-analysis. Annals of Plastic Surgery 84(1): 117-122.
https://doi.org/10.1097/SAP.0000000000002006
Basat,
P., Estrella, E. & Magdaluyo, E. 2020. Material selection and design of
external fixator clamp for metacarpal fractures. Materials Today:
Proceedings 33. https://doi.org/10.1016/j.matpr.2020.06.129
Braidy,
H.F. & Ziccardi, V.B. 2009. External fixation for mandible fractures. Atlas
of the oral and maxillofacial surgery clinics of North America 17(1):
45-53. https://doi.org/10.1016/j.cxom.2008.10.001
Brown,
J.S., Barry, C., Ho, M. & Shaw, R. 2016. A new classification for
mandibular defects after oncological re-section. The Lancet Oncology 17(4): e23-e30. https://doi.org/10.1016/S1470-2045(15)00310-1
Carpinello,
A., Vezzetti, E., Ramieri, G., Moos, S., Novaresio, A., Zavattero, E. &
Borbon, C. 2021. Evaluation of HMDS by QFD for augmented reality applications
in the maxillofacial surgery domain. Applied Sciences 11(22):
11053. https://doi.org/10.3390/app112211053
Chan,
L-K. & Wu, M-L. 2002. Quality function deployment: A literature review. European
Journal of Operational Research 143(3): 463-497.
https://doi.org/10.1016/S0377-2217(02)00178-9
Chaus,
G.W., Dukes, C., Hak, D.J., Mauffrey, C. & Hammerberg, E.M. 2014. Analysis
of usage and associated cost of external fixators at an urban level 1 trauma
centre. Injury 45(10): 1611-1613.
https://doi.org/10.1016/j.injury.2014.04.031
Chou,
J.R. 2021. A TRIZ-based product-service design approach for developing
innovative products. Computers and Industrial Engineering 161(1):
107608. https://doi.org/10.1016/j.cie.2021.107608
Cornelius,
C.P., Augustin, J.B. & Sailer, L.K. 2009. External pin fixation for
stabilization of the mandible - Come-back of a method: Historical review and
first experiences with the "mandible external fixator". Oral and
Maxillofacial Surgery 13(1): 1-14.
https://doi.org/10.1007/s10006-008-0142-4
De
Mello-Filho, F.V., Auader, M., Cano, E., Carrau, R.L., Myers, E.N. & Miles,
C.E. 2003. Effect of mandibular titanium reconstructive plates on radiation
dose. American Journal of Otolaryngology - Head and Neck Medicine and
Surgery 24(4): 231-235. https://doi.org/10.1016/S0196-0709(03)00033-4
El-Haik,
B.S. & Mekki, K.S. 2008. DFSS innovation for medical devices. Medical
Device Design for Six Sigma: A Road Map for Safety and Effectiveness. New
York: John Wiley and Sons Inc. https://doi.org/10.1002/9780470264003
Farrahshaida,
M.S., Abu, B.S., Muhammad, R.R., Norhamidi, M. & Lim, T.F. 2017. Effect of
space holders on fabrication of porous titanium alloy-hydroxyapatite composite
through powder injection molding. Sains Malaysiana 46(9): 1651-1657.
http://dx.doi.org/10.17576/jsm-2017-4609-38
Frizziero,
L., Francia, D., Donnici, G., Liverani, A. & Caligiana, G. 2018.
Sustainable design of open molds with QFD and TRIZ combination. Journal of
Industrial and Production Engineering 35(1): 21-31.
https://doi.org/10.1080/21681015.2017.1385543
Funayama,
A., Kojima, T., Yoshizawa, M., Mikami, T., Kanemaru, S., Niimi, K., Oda, Y.,
Kato, Y. & Kobayashi, T. 2017. A simple technique for repositioning of the
mandible by a surgical guide prepared using a three-dimensional model after
segmental mandibulectomy. Maxillofacial Plastic and Reconstructive Surgery 39(1): 16. https://doi.org/10.1186/s40902-017-0113-5
Fung,
R.Y.K., Tang, J., Tu, Y. & Wang, D. 2002. Product design resources
optimization using a non-linear fuzzy quality function deployment model. International
Journal of Production Research 40(3): 585-599.
https://doi.org/10.1080/00207540110061634
Ghane,
M., Ang, M.C., Cavallucci, D., Abdul Kadir, R., Ng, K.W. & Sorooshian, S.
2022. TRIZ trend of engineering system evolution: A review on applications,
benefits, challenges and enhancement with computer-aided aspects. Computers
& Industrial Engineering 174: 108833.
https://doi.org/10.1016/j.cie.2022.108833
Gibbons,
A.J., Mackenzie, N. & Breederveld, R.S. 2011. Use of a custom designed
external fixator system to treat ballistic injuries to the mandible. International
Journal of Oral and Maxillofacial Surgery 40(1): 103-105.
https://doi.org/10.1016/j.ijom.2010.08.001
Grant,
J.S. & Davis, L.L. 1997. Selection and use of content experts for
instrument development. Research in Nursing & Health 20(3): 269-274.
https://doi.org/10.1002/(sici)1098-240x(199706)20:3<269::aid-nur9>3.0.co;2-g
Hihara,
M., Yagura, T., Takegawa, M., Kakudo, N., Morimoto, N. & Kusumoto, K. 2019.
A novel fixation method for panfacial fracture using an Ilizarov-type external
fixator. Trauma Case Reports 22: 100214.
https://doi.org/10.1016/j.tcr.2019.100214
Ho,
M.W., Brown, J.S. & Shaw, R.J. 2013. Intraoperative temporary fixation for
primary reconstruction of composite mandibular ablative defects. The British
Journal of Oral & Maxillofacial Surgery 51(8): 976-977.
https://doi.org/10.1016/j.bjoms.2013.05.156
Jia,
G.Z. & Bai, M. 2011. An approach for manufacturing strategy development
based on fuzzy-QFD. Computers & Industrial Engineering 60(3):
445-454. https://doi.org/10.1016/j.cie.2010.07.003
Kammoun,
A., Hachicha, W. & Aljuaid, A.M. 2021. Integrating quality tools and
methods to analyze and improve a hospital sterilization process. Healthcare 9(5): 1-13. https://doi.org/10.3390/healthcare9050544
Kang,
C.Q., Ng, P.K. & Liew, K.W. 2022. A TRIZ-Integrated conceptual design
process of a smart lawnmower for uneven grassland. Agronomy 12(11):
2728. https://doi.org/10.3390/agronomy12112728
Kazi,
A.A., Lee, T.S., Vincent, A., Sokoya, M., Sheen, D. & Ducic, Y. 2019. The
role of external fixation in trauma and reconstruction of the mandible in the
age of rigid fixation. Facial Plastic Surgery 35(6): 614-622.
https://doi.org/10.1055/s-0039-1700799
Lynn,
M. 1986. Determination and quantification of content validity index. Nursing
Research 35: 382-386. https://doi.org/10.1097/00006199-198611000-00017
Manam,
N.S., Harun, W.S.W., Shri, D.N.A., Ghani, S.A.C., Kurniawan, T., Ismail, M.H.
& Ibrahim, M.H.I. 2017. Study of corrosion in biocompatible metals for implants:
A review. Journal of Alloys and Compounds 701: 698-715.
https://doi.org/10.1016/j.jallcom.2017.01.196
Marti-Flich, L., Schlund, M., Raoul, G., Maes, J-M.,
Ferri, J., Wojcik, T. & Nicot, R. 2020. Twenty-four years of experience in
management of complex mandibular fractures with low cost, custom-made
mandibular external fixation: A 65-patient series. Journal of Stomatology,
Oral and Maxillofacial Surgery 121(3): 242-247.
https://doi.org/10.1016/j.jormas.2019.08.008
McChesney,
G.R., Morris, R.P., Al Barghouthi, A., Travascio, F., Latta, L.L. &
Lindsey, R.W. 2022. Relationship to drill bit diameter and residual fracture
resistance of the distal tibia. Clinical Biomechanics 97: 105686.
https://doi.org/10.1016/j.clinbiomech.2022.105686
Melgoza,
E.L., Serenó, L., Rosell, A. & Ciurana, J. 2012. An integrated
parameterized tool for designing a customized tracheal stent. Computer-Aided
Design 44(12): 1173-1181. https://doi.org/10.1016/j.cad.2012.07.004
Mohamed,
A., Mepani, V. & Sharma, V. 2020. Use of an endotracheal tube in the
biphasic fixation of a mandibular fracture. British Journal of Oral and
Maxillofacial Surgery 58(4): 484-485.
https://doi.org/10.1016/j.bjoms.2020.01.025
Moiduddin,
K., Mian, S.H., Alkhalefah, H. & Umer, U. 2019. Digital design, analysis
and 3D printing of prosthesis scaffolds for mandibular reconstruction. Metals 9: 569.
https://doi.org/10.3390/met9050569
Nurul Nadiah Mahmud, Abu Bakar Sulong & Ameyama, K.
2023. Powder
injection moulded Ti-6Al-4V-HA composite for implants. Sains Malaysiana 52(5): 1557-1565. https://doi.org/10.17576/jsm-2023-5205-17
Odono,
L.T., Brady, C.M. & Urata, M. 2019. Mandible fractures. In Facial Trauma
Surgery: from Primary Repair to Reconstruction, edited by Dorafshar,
A.H., Rodriguez, E.D. & Manson, P.N. New York: Elsevier.
https://doi.org/10.1016/B978-0-323-49755-8.00022-0
Pamias-Romero,
J., Saez-Barba, M., de-Pablo-García-Cuenca, A., Vaquero-Martínez, P.,
Masnou-Pratdesaba, J. & Bescós-Atín, C. 2023. Quality of life after
mandibular reconstruction using free fibula flap and customized plates: A case
series and comparison with the literature. Cancers 15(9): 2582.
https://doi.org/10.3390/cancers15092582
Patel,
A., Harrison, P., Cheng, A., Bray, B. & Bell, R.B. 2019. Fibular
reconstruction of the maxilla and mandible with immediate implant-supported
prosthetic rehabilitation: Jaw in a day. Oral and Maxillofacial Surgery
Clinics of North America 31(3): 369-386.
https://doi.org/10.1016/j.coms.2019.03.002
Peled, M., El-Naaj, I. A., Lipin, Y., & Ardekian, L. 2005. The use of free fibular flap for functional mandibular reconstruction. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 63(2): 220–224. https://doi.org/10.1016/j.joms.2004.06.052
Pereira-Filho,
V.A., da Silva, B.N., Nunes Reis, J.M., Spin-Neto, R., Real Gabrielli, M.F.
& Monnazzi, M.S. 2013. Effect of the number of screws on the stability of
locking mandibular reconstruction plates. Int. J. Oral Maxillofac. Surg.
42(6): 732-735. https://doi.org/10.1016/j.ijom.2013.02.010
Polit,
D.E. & Beck, C.T. 2006. Essentials of Nursing Research. 6th ed.
Philadelphia: Lippincott Williams & Wilkins.
Purushothaman,
K. & Ahmad, R. 2022. Integration of six sigma methodology of DMADV steps
with QFD, DFMEA and TRIZ applications for image-based automated inspection
system development: A case study. International Journal of Lean Six Sigma 13(6): 1239-1276. https://doi.org/10.1108/IJLSS-05-2021-0088
Riccio,
S., Tagliabue, M., Soncini, G., Giugliano, G., Bruschini, R., Zorzi, S., De
Benedetto, L., Chu, F., De Berardinis, R. & Ansarin, M. 2021. An innovative
tool for mandibular reconstruction in oral malignancies: A pictorial essay. Journal
of Stomatology, Oral and Maxillofacial Surgery 122(4): e81-e84.
https://doi.org/10.1016/j.jormas.2021.03.010
Roy,
M.K., Ray, A. & Pradhan, B.B. 2014. Non-traditional machining process
selection using integrated fuzzy AHP and QFD techniques: A customer
perspective. Production & Manufacturing Research 2(1): 530-549.
https://doi.org/10.1080/21693277.2014.938276
Shakouri,
E., Haghighi Hassanalideh, H. & Fotuhi, S. 2021. Bone drilling with
internal gas cooling: experimental and statistical investigation of the effect
of cooling with CO2 on reduction of temperature rise due to drill
bit wear. Advances in Production Engineering and Management 16(2):
199-211. https://doi.org/10.14743/APEM2021.2.394
Shaw,
R.B., Katzel, E.B., Koltz, P.F., Yaremchuk, M.J., Girotto, J.A., Kahn, D.M.
& Langstein, H.N. 2011. Aging of the facial skeleton: Aesthetic
implications and rejuvenation strategies. Plastic and Reconstructive Surgery 127(1): 374-383. https://doi.org/10.1097/PRS.0b013e3181f95b2d
Shen,
S.Y., Yu, Y., Zhang, W.B., Liu, X.J. & Peng, X. 2017. Angle-to-angle
mandibular defect reconstruction with fibula flap by using a mandibular
fixation device and surgical navigation. The Journal of Craniofacial Surgery 28(6): 1486-1491. https://doi.org/10.1097/SCS.0000000000003891
Singh,
P. & Agrawal, G. 2022. Mapping the customer centric weather index insurance
service design using quality function deployment. The TQM Journal 34(6):
1800-1822. https://doi.org/10.1108/TQM-08-2021-0236
Streiner,
D.L., Norman, G.R. & Cairney, J. 2015. Health Measurement Scales: A
Practical Guide to Their Development and Use. 5th ed. Oxford: Oxford
University Press.
Tortorella,
G.L., Fogliatto, F.S., Sunder, M.V., Vergara, A.M.C. & Vassolo, R. 2022.
Assessment and prioritisation of Healthcare 4.0 implementation in hospitals
using quality function deployment. International Journal of Production
Research 60(10): 3147-3169. https://doi.org/10.1080/00207543.2021.1912429
Tümer,
D., Güngörürler, M., Havıtçıoğlu, H. & Arman, Y. 2020.
Investigation of effective coating of the Ti–6Al–4V alloy and 316L stainless
steel with graphene or carbon nanotubes with finite element methods. Journal
of Materials Research and Technology 9(6): 15880-15893.
https://doi.org/10.1016/j.jmrt.2020.11.052
Ung, F., Rocco, J.W. & Deschler, D.G. 2002. Temporary
intraoperative external fixation in mandibular reconstruction. The
Laryngoscope 112(9): 1569-1573. https://doi.org/10.1097/00005537-200209000-00006
Vural,
E. & Yuen, J.C. 2007. Combining use of resin models with external fixation
in mandibular reconstruction. Archives of Otolaryngology, Head & Neck
Surgery 133(6): 603-607. https://doi.org/10.1001/archotol.133.6.603
Wang, Y.H., Lee, C.H. & Trappey, A.J.C. 2017. Service
design blueprint approach incorporating TRIZ and service QFD for a meal
ordering system: A case study. Computers & Industrial Engineering 107: 388-400. https://doi.org/10.1016/j.cie.2017.01.013
Yang,
W., Cao, G., Peng, Q. & Sun, Y. 2021. Effective radical innovations using
integrated QFD and TRIZ. Computers & Industrial Engineering 162:
107716. https://doi.org/10.1016/j.cie.2021.107716
Yin,
X.L., Tan, Y.R., Liu, Y., Sun, W.W., Zhang, X.Y., Hu, Y.J., Sun, J., Zhang,
C.P. & Zhong, L.P. 2019. Clinical application of temporary external fixator
for immediate mandibular reconstruction. The Journal of Craniofacial Surgery 30(4): e337-e342. https://doi.org/10.1097/SCS.0000000000005303
You, Z.H., Bell, W.H., Schneiderman, E.D. & Ashman,
R.B. 1994. Biomechanical
properties of small bone screws. Journal of Oral and Maxillofacial Surgery 52(12): 1293-1302. https://doi.org/10.1016/0278-2391(94)90052-3
Zhang,
F., Yang, M. & Liu, W. 2014. Using integrated quality function deployment
and theory of innovation problem solving approach for ergonomic product design. Computers & Industrial Engineering 76: 60-74.
https://doi.org/10.1016/j.cie.2014.07.019
Zhang, X., Li, J.,
Fan, K., Chen, Z., Hu, Z. & Yu, Y. 2019. Neural
approximation enhanced predictive tracking control of a novel designed
four-wheeled rollator. Applied Sciences 10: 125.
https://doi.org/10.3390/app10010125
*Corresponding
author; email: Apicbo@kku.ac.th
|